### Relators and Notions of Simulation Revisited

Sergey Goncharov, Dirk Hofmann, Pedro Nora,

Lutz Schröder, Paul Wild

LICS 2025, June 23-26, 2025

# Outline



# Bisimulation for LTS

Recall: labelled transition system (LTS)  $(X, (\xrightarrow{a})_{a \in \mathcal{A}})$  is

- ► state space X
- transition relations  $\xrightarrow{a} \subseteq X \times X$  for every  $a \in \mathcal{A}$

(Strong) bismilarity  $\sim$  is greatest such relation r that

- $\blacktriangleright$  It follows that  $\sim$  is equivalence
- We understand it as behavioural equivalence
- Not necessarily greatest  $r \rightsquigarrow$  bisimulation
- Only left square ~> similarity/simulation

Is it the only "coinductive" way to define  $\sim ? \ \mathrm{No!}$ 

## **Twisted Bisimulation**

Assume  $A = \{a, b\}$ . Twisted bisimulation r additionally includes alternative:



plus converses, plus duals

Again,  $\sim$  is greatest such r

In more detail: notion of bisimulation is

- **Sound** if bisimilarity  $\subseteq \sim$
- Complete if  $\sim \subseteq$  bisimilarity
- $\implies$  twisted bisimulation is sound and complete

# Twisted Bisimulation: Example



Smallest bisimulation in the usual sense relating p and q is

$$\{(p,q),(x,x),(x,y),(y,y),(y,x)\}$$

 Using twisted bisimulation, we can make do with the strictly smaller relation

$$\{(p,q), (x,x), (x,y), (y,y)\}$$

So, twisted bisimulation is more permissive

#### Questions:

Consider LTS

- 1. Is there most permissive one?
- 2. What is bisimulation anyhow?

# Behavioural Equivalence Coalgebraically

- F-coalgebra (X, α) for an endofunctor F: Set → Set consists of a set X of states and a transition map α: X → FX
- x ∈ X and y ∈ Y of coalgebras (X, α) and (Y, β), respectively, are behaviourally equivalent if there exist a coalgebra (Z, γ), f: X → Z, g: Y → Z, such that



such that f(x) = g(y)

**Example:**  $F = \mathcal{P}(A \times -) - LTS$  functor

Many more examples: Kripke frames, Markov chains, neighbourhood structures, weighted transitions systems, etc.

# (Bi)simulation Coalgebraically

► Relator for functor F: Set → Set is monotone function on relations, such that

 $R(r: X \rightarrow Y): FX \rightarrow FY$ 

• Given relator *R*, relation  $r: X \rightarrow Y$  is *R*-simulation from coalgebra  $\alpha: X \rightarrow FX$  to  $\beta: Y \rightarrow FY$  if



i.e, if x r y entails  $\alpha(x) \operatorname{Rr} \beta(y)$ , for all  $x \in X$  and  $y \in Y$ 

► R-bisimulation are R-simulation for symmetric relators, i.e. R(r°) = (Rr)°

R-bisimilarity is defined as a greatest fixpoint of (\*) by Knaster-Tarski theorem



#### 7/13

# Some Common Knowledge

**Barr relator**  $\overline{F}$  of a functor F takes a relation  $r: X \rightarrow Y$  as a span

$$X \xleftarrow{\pi_1} Z \xrightarrow{\pi_2} Y$$

and returns

$$FX \xleftarrow{F\pi_1} FZ \xrightarrow{F\pi_2} FY$$

- ▶ *F*-bisimulation is called Aczel-Mendler (bi)simulation
- $\bar{F}$ -bisimulation is always sound, but need not be complete
- If F preserves weak pullbacks F is complete and is a normal (=identity-preserving) lax extension\*
- Normal lax extension work more generally (e.g. for monotone neighbourhood functor)

But do we actually need lax extensions?

<sup>\*</sup>Definition omitted

# **Difunctional Functoriality**

*F*-relator *R* is difunctionally functorial if for all functions  $f: X \to Z$ and  $g: Y \to Z$ ,  $R(g^{\circ} \cdot f) = (Fg)^{\circ} \cdot Ff$ .

**Result # 1:** if R is difunctionally functorial then R-similarity is sound and complete

Difunctional functoriality is much weaker requirement than normal laxness

**Result # 2:** R is a lax extension iff the induced class of (bi)simulations contains all coalgebra homomorphisms and their converses and is closed under composition

**Result # 3:** Normality is essentially a necessary condition for soundness of bisimulations

### coBarr Relator

Difunctional relations are those r that are presented by co-spans

$$X \xrightarrow{\iota_1} A \xleftarrow{\iota_2} Y$$

We then define coBarr relators via co-spans

$$FX \xrightarrow{F\iota_1} FA \xleftarrow{F\iota_2} FY$$

i.e. 
$$\underline{F}r = (F\iota_2)^{\circ} \cdot F\iota_1$$

However (!), this is only well-defined if  $\underline{F}$  is independent of the choice of the cospan, which is iff F preserves 1/4-iso pullbacks

# Barr Relator v.s. coBarr Relator

- Recently\*: preservation of 1/4-iso pullbacks is necessary for admitting a normal lax extension
- ▶ If F weakly preserves pullbacks then  $\overline{F}$  is least normal lax extension

Contrastingly:

**Result # 4:** If F preserves 1/4-iso pullbacks then

- 1.  $\underline{F}$  is symmetric difunctionally functorial relation  $\implies \underline{F}$ -bisimulation is sound and complete (1/4-iso pullback preservation sufficient)
- 2. If F weakly preserves pullbacks,  $\underline{F}r = \overline{F}\hat{r}$  where  $\hat{r}$  difunctional closure of r
- 3.  $\underline{F}$  is greatest difunctionally functorial relator

 $<sup>^{\</sup>star}$ Goncharov, Hofmann, Nora, Schröder, Wild, "Identity-Preserving Lax Extensions and Where to Find Them", 2025. \$11/13\$

## Greatest Normal Lax Extension

Twisted bisimulation is induced not only by a difunctionaly functorial relator, but by greatest normal lax extension

Can we construct them in general?

**Idea:** lax extensions form a complete lattice, so we can form join of all normal lax extensions

Problems 1: The lattice may be empty
Problems 2: The joins must preserve normality

**Result # 5:** Largest normal lax extension exists whenever F preserves inverse images

weak pb. preservation  $\implies$  inverse image preservation  $\implies$   $1/4\mbox{-pb.}$  preservation

# Conclusions

- We understood (normal) lax extensions through their compositionality properties
- Difunctionally functorial relators novel modest condition ensuring soundness and completeness of coalgebraic simulation
- 1/4-iso pullback preservation as fundamental property for constructing sound and complete relators
- Existence of largest normal lax extension for inverse image preserving functors

# References