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Simple Algebraic Language

M, N ::= Age?(Mi)i∈N | Happy?(M, N) | Bye

Terms = Behaviors

Age?

...

Happy?
Bye

yes

. . .no42
...

Bye1

Bye
0

Traces = Paths

$ Age?
> 42
$ Happy?
> yes
$ Bye

ω-ary binary 0-ary (=constant)
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More Generally
▶ Signature: family of sets (Ar(k))k∈Σ where Ar(k) ∈ N ∪ {N}
▶ Terms, also Programs

M, N ::= Req k?(Mi)i∈Ar(k)

▶ Traces, also Plays, are Q/A interaction sequences

k1? i1≤Ar(
k 1)

k2? i2≤Ar(
k 2)

. . . kn?

and

k1? i1≤Ar(
k 1)

k2? i2≤Ar(
k 2)

. . . kn? in
≤Ar(

kn)

▶ Programs generate traces; two programs are trace-equivalent if they
generate same traces

Remarks:
1. Programs well-founded =⇒ traces finite
2. Infinite arities =⇒ no Kőnig’s lemma =⇒ well-founded ̸= finite
3. So far, trace equivalence = syntactic equality

passive-ending

active-ending



Warm-Up: Non-Determimism
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Non-Deterministic Programs

▶ Non-deterministic programs:

M, N ::= Req k?(Mi)i∈Ar(k) | M + N

For countable non-determinism:

M, N ::= Req k?(Mi)i∈Ar(k) | ∑n∈N
Mn

▶ Non-deterministic traces Traces (M) are defined analogously:
sets of plays (=traces), program M can exhibit

▶ Trace equivalence: Traces (M) = Traces (N)
▶ More generally: non-deterministic strategy is a set of plays

+ a coherence condition (≈ prefix-closure)

Key questions:

1. Completeness: how to logically characterize trace equivalence?

2. Definability: how to characterize definable strategies Traces (M)
among all strategies?
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Algebraic Theories: Sums and Tensors

Theory of finitary non-determinism

(M + N) + K ≡ M + (N + K) M + N ≡ N + M M + M ≡ M

▶ Sum of theories: join operations and equations
=⇒ bisimulation equivalence, e.g.

Req k?(Req l?N + Req r?M) ̸≡ Req k?(Req l?N) + Req k?(Req r?M)

▶ Tensor of theories1: additionally quotient by tensor laws:

Req k?(Mi)i∈Ar(k) + Req k?(Ni)i∈Ar(k) ≡ Req k?(Mi + Ni)i∈Ar(k)

=⇒ trace equivalence (normalization by tensor law)

Remarks: In terms of monads: starting with signature Σ,
1. Monad coproduct Σ⋆ + P<ω – for bisimulation equivalence

2. Monad tensor Σ⋆ ⊗P<ω – for trace equivalence

free monad on Σ

1Freyd, “Algebra valued functors in general and tensor products in particular”,
1966.
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Convention

From now on, assume one binary operation

‘∗’
(so plays can be written as ?i1?i2 . . . (ik ∈ {0, 1}))
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Countable Non-determinism

Tensor Law for Countable Non-determinism (for ∗)

∑n∈N Mn ∗ Nn =
(
∑n∈N Mn

)
∗
(
∑n∈N Nn

)
Theorem: Tensor equivalence is (sound and) complete for trace
equivalence2.

Note: We cannot just normalize by tensor law, e.g.

x ∗ x + x ∗ (x ∗ x) + x ∗ (x ∗ (x ∗ x)) + . . .

would yield undefinable strategy with infinite play: ?1?1?1. . .

Proof Idea.
▶ Let M ≤ N if M + N ≡ N. Then M ≡ N iff M ≤ N and N ≤ M
▶ Prove that Traces (M) ≤ Traces (N) entails M ≤ N by induction

on M

2Bowler, Levy, and Plotkin, “Initial Algebras and Final Coalgebras Consisting of
Nondeterministic Finite Trace Strategies”, 2018.
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Educated Guess

Tensor equivalence must be sound and complete for
trace equivalence

But is it?

This work: countably probabilistic programs –

▶ Yes, for finitary signatures

▶ For infinitary signatures – open problem



Probabilistic Traces
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Countable Distributions

Tensor Law for Countable Probability (for ∗)(
∑n∈N pn · Mn

)
∗
(
∑n∈N pn · Nn

)
≡ ∑n∈N pn · (Mn ∗ Nn)

where ∑n∈N pn = 1, ∀n ∈ N. pn ≥ 0

Laws for countable distributions = laws of super-convex algebras,
extending familiar convex algebras

Probabilistic strategies: such functions σ from passive-ending plays
to [0, 1] that

σ(ϵ) = 1 σ(s) = ∑k∈Σ σ(s i k?)

(generalization of prefix-closure)
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Probabilistic Trace Semantics

▶ Each k ∈ Σ yields semantic counterpart of Req k? on strategies:

Req k?(σi)i∈Ar(k) :

{ k? 7→ 1
k? i s 7→ σi(s)
l? i s 7→ 0 otherwise

▶ Probabilistic choice extends pointwise
▶ We then define probabilistic trace semantics by structural recursion:

Traces
(
Req k?(Mi)i∈Ar(k)

)
= Req k?(Traces (Mi))i∈I

Traces
(

M +p N
)
= Traces (M) +p Traces (N)

Traces
(
∑n∈N

pn · Mn

)
= ∑n∈N

pn · Traces (Mn)

Proposition: for finitary distributions, trace semantics is sound a
complete

Proof: normalization by tensor law
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Example

Let

M = 1
2 x ∗ z + 1

4 y ∗ (x ∗ z) + 1
8 y ∗ (y ∗ (x ∗ z)) + 1

16 y ∗ (y ∗ (y ∗ (x ∗ z))) + · · ·
N = 1

2 y ∗ z + 1
4 x ∗ (y ∗ z) + 1

8 x ∗ (x ∗ (y ∗ z)) + 1
16 x ∗ (x ∗ (x ∗ (y ∗ z))) + · · ·

Then Traces (M) = Traces (N),

and in fact M ≡ N:

M ≡ 1
4 x ∗ z + 2

8 (
1
2 x ∗ z + 1

2 y ∗ (x ∗ z)) + 3
16 (

1
3 x ∗ z + 1

3 y ∗ (x ∗ z) + 1
3 y ∗ (y ∗ (x ∗ z))) + · · ·

{completeness for finite distributions}

≡ 1
4 x ∗ z + 2

8 (
1
2 y ∗ z + 1

2 x ∗ (x ∗ z)) + 3
16 (

1
3 y ∗ z + 1

3 y ∗ (y ∗ z) + 1
3 x ∗ (x ∗ (x ∗ z))) + · · ·

≡ 1
4 x ∗ z + 1

8 x ∗ (x ∗ z) + 1
16 x ∗ (x ∗ (x ∗ z))) + · · ·+

1
4 y ∗ z + 1

8 y ∗ (y ∗ z) + 1
16 y ∗ (y ∗ (y ∗ z))) + · · ·

and symmetrically for N
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Idea of Solution

▶ Key step: propagating choices upwards with(
∑n∈I pn · Mn

)
∗
(
∑m∈J Nm · tm

)
⇝∑n∈I,m∈J(pn · qm) · Nn ∗ Mm

▶ W.l.o.g. we then can start with

Traces (M) = Traces (N)

where M = ∑n∈N pn · Mn with choice-free Mn and same for N
▶ Find first such k that ∑n≤k pn accedes 1/2
▶ Find first such m that ∑n≤m qn · Nn “accedes” ∑n≤k pn · Mn

▶ Prove that Traces
(
∑n≤m qn · Mn

)
∖ Traces

(
∑n≤k pn · Nn

)
is

definable, yielding ∆ = ∆0, such that

∑n≤m qn · Mn ≡ ∑n≤k pn · Nn + ∆0

▶ Propagate ∆ infinitely, alternating between N and M
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Glimpse at Definability

A strategy σ is definable if σ = Traces (M) for some M

Proposition: In language with ∗/2 and arbitrary constants X, σ is
definable iff for every (b1b2 . . .) ∈ 2ω,

∑{σ(?b1 . . .?bn x) | n ∈ N, x ∈ X} = 1

Intuitively, σ is definable if there are no emergent infinite traces

Example:

{x 7→ 1
2 , ?0x 7→ 1

2 , ?1x 7→ 1
4 , ?1?0x 7→ 1

8 , ?1?1x 7→ 1
8 , . . .}

= Traces
(

1
2 x + 1

4 x ∗ x + 1
8 x ∗ (x ∗ x) + . . .

)
but not

{x 7→ 1
3 , ?0x 7→ 2

9 , ?1x 7→ 1
9 , ?1?0x 7→ 2

27 , ?1?1x 7→ 1
27 , . . .}
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What Else in Paper

▶ Completeness for infinitary distributions works out under additional
principles, such as cancellativity or impersonalization

▶ Unlike completeness, definability works for arbitrary signatures
▶ Definability in game-theoretic terms via victorious strategies
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Open Problem

▶ Our completeness proof works for any finitary signatures
▶ It crucially relies on the fact that terms can be normalized by

pushing infinite sums upwards using(
∑n∈I pn · Mn

)
∗
(
∑m∈J qm · Nm

)
⇝∑n∈I,m∈J(pn · qm) · Nn ∗ Mm

▶ With countable signatures, this is not possible, e.g.

Age?
(

x0, 1
2 x0 +

1
2 x1, 1

3 x0 +
1
3 x1 +

1
3 x2, . . .

)
there is no normal form in this sense

▶ So, do we have completeness in this case? We do not know
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More on Tensors

▶ Tensors of monads/theories go back to Freyd3

▶ They were utilized in computer science for commutative combination
of effects4 and extended beyond finitary case

▶ Often used as a tool to enforce quotienting by trace semantics5

(e.g. certain stack monad T is behind deterministic push-down
automata (pda) – to obtain nondeterministic pda, one needs T⊗P<ω)

3Freyd, “Algebra valued functors in general and tensor products in particular”,
1966.

4Hyland, Plotkin, and Power, “Combining Computational Effects: Commutativity
& Sum”, 2002.

5Goncharov, Milius, and Silva, “Towards a Uniform Theory of Effectful State
Machines”, 2020.
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