Kleene Iteration: From Kleene Algebra Onwards

Sergey Goncharov

School of Computer Science, Univ. Birmingham

MGS Christmas seminar, Univ. Sheffield, 17 December, 2024

Kene Iteration: From Kleene Algebra Onwards

Sergey Goncharov

School of Computer Science, Univ. Birmingham

Christmas semi

Overview

What I will talk about:

- ' Compositionality
- ' Modularity
- ' Genericity
- ' Design
- ' Semantics

What I wont talk about:

- **•** Efficiency
- ' Optimization
- ' Computation Complexity

Background

 \equiv Goncharov, ["Shades of Iteration: From Elgot to Kleene",](#page-0-0) WADT 2022

 \equiv Goncharov and Uustalu, ["A Unifying Categorical View of](#page-0-0) [Nondeterministic Iteration and Tests",](#page-0-0) CONCUR 2024

[Kleene Iteration in Kleene Algebra](#page-4-0)

Regular Events

$$
\text{E.g. } (b+\alpha (ab^*a)b)^*(1+\alpha a)
$$

- Kleene star $e \mapsto e^*$
- ' Kleene theorem
	- ' Syntax for finite state machines
	- ' Algebraic equational reasoning

Language Interpretation

Regular expressions over Σ:

$$
e, e_1, e_2 \coloneqq (a \in \Sigma) | 0 | 1 | e_1 + e_2 | e_1; e_2 | e^*
$$

' Language interpretation:

$$
\begin{aligned}\n\llbracket 0 \rrbracket &= \{\ \} & \qquad \qquad \llbracket e_1; e_2 \rrbracket &= \{ xy \ \vert \ x \in \llbracket e_1 \rrbracket, y \in \llbracket e_2 \rrbracket \} \\
\llbracket 1 \rrbracket &= \{ \epsilon \} & \qquad \llbracket e_1 + e_2 \rrbracket &= \llbracket e_1 \rrbracket \cup \llbracket e_2 \rrbracket \\
\llbracket e^* \rrbracket &= \{ \epsilon \} \cup \llbracket e \rrbracket \cup \llbracket e; e \rrbracket \cup \dots\n\end{aligned}
$$

• Language $L \subseteq \Sigma^*$ is regular iff $L = [e]$ for some regular expression e
with $\mathbb{F}a \mathbb{I} = a$ for $a \in \Sigma$ with $\llbracket a \rrbracket = a$ for $a \in \Sigma$

Other interpretations? Yes, e.g. relational one! \odot Complete reasoning system for regular expressions

Axioms of Kleene Algebra

Kleene algebra is a structure $(S, 0, 1, +, \ldots, (-)^*)$, where $(S, 0, 1, +, \ldots)$ is an idempotent semiring:

- \bullet $(S, 0, +)$ and $(S, 1, ;)$ are monoids
- $(S, 0, +)$ is commutative $(x + y = y + x)$ and idempotent $(x + x = x)$
- ' distributive laws:

$$
x; (y + z) = x; y + x; z
$$

\n $(x + y); z = x; z + y; z$
\n $x; 0 = 0$
\n $0; x = 0$

(thus, S is partially ordered: $x \leq y$ iff $x + y = y$)

... plus Kleene iteration satisfying $x^* = 1 + x; x^*$, and

$$
\begin{array}{l}\nx; y+z \le y \\
\hline\nx^*; z \le y\n\end{array}\n\qquad\n\begin{array}{l}\nx+z; y \le z \\
\hline\nx; y^* \le z\n\end{array}
$$

Equivalently: x^* ; z is a least fixpoint of x ; (-) + z and z ; y^* is a least fixpoint of $(-)$; $y + z$

Key (Design) Features

- ' Complete both over language model and over relational model
- ' Algebraic, i.e. closed under substitution, unlike Salomaa's rule˚

$$
\frac{y = z + xy \qquad x \quad \text{guarded}}{y = x^*z}
$$

- All fixpoints are least (pre-)fixpoints
	- ' in Salomaa's system: particular fixpoints are unique fixpoints
- Induction rules

$$
\frac{x; y+z \le y}{x^*; z \le y} \qquad \qquad \frac{x+z; y \le z}{x; y^* \le z}
$$

encompass infinitely many identities, critical for completeness

[˚]A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

Tests for Control

- ' Intuition: 0 is a deadlock, 1 is a neutral program, ; is sequential $composition, + is non-deterministic choice$
- ' Kleene algebra with tests (KAT) adds control via tests:
	- ' Kleene sub-algebra B
	- \bullet B is Boolean algebra under $(0, 1, \cdot, +)$
- This enables encodings:
	- Branching (if b then p else q) as $b; p + \overline{b}; q$ • Looping $(which be do p)$ as $(b;p)^*$; \overline{b} • Hoare triples ${a}$ p {b} as a ; p; b = a; p

Example:

while b do $p =$ if b then p else (while b do p)

Kleene Algebra Today

- Regular expressions
- ' Algebraic language of finite state machines and beyond
- ' Relational semantics of programs
- Relational reasoning and verification, e.g. via dynamic logic
- Plenty of extensions:
	- \bullet modal \Rightarrow modal Kleene algebra (Struth et al.)
	- stateful \Rightarrow KAT + B! (Grathwohl, Kozen, Mamouras)
	- concurrent \Rightarrow concurrent Kleene algebra (Hoare et al.)
	- nominal \Rightarrow nominal Kleene algebra (Kozen et al.)
	- \bullet differential equations \Rightarrow differential dynamic logic (Platzer et al.)
	- network primitives \Rightarrow NetKAT (Foster et al.)
	- ' etc., etc., etc.
- decidability and completeness (most famously w.r.t. language interpretation and relational interpretation)

[Beyond Kleene Algebra's Iteration](#page-11-0)

Scenario I: Exceptions

• Assumming that programs may raise exceptions: raise $e_i =$ "raise exception e_i ",

$$
\mathsf{raise}\,e_1=\mathsf{raise}\,e_1;\,0=0=\mathsf{raise}\,e_2;0=\mathsf{raise}\,e_2
$$

' So, we cannot have more than one exception

• ... unless we discard the law

$$
p;0=0\\
$$

Scenario II: Branching Time

are famously non-bisimular, failing Kleene algebra law

 $p; (q + r) = p; q + p; r$

Scenario III: Divergence

• Identity

$$
(\mathsf{p}+1)^*=\mathsf{p}^*
$$

is provable in Kleene algebra, because p ˚ is a least fixpoint

' Alternatively:

$$
1^*=1
$$

 \bullet Hence deadlock = divergence

\n- How to undo this?
\n- $$
1^* = 1
$$
 is not a Kleene algebra axiom
\n

What is generic core of Kleene iteration?

- Core reasoning principles
- ' Robustness under adding features (e.g. exceptions)
- ' Generic completeness argument
- ' Compatibility with classical program semantics
	- \Rightarrow Soundness of while-loop encoding

[Categorifying Iteration](#page-16-0)

From Algebras to Categories

 \bullet Categories \approx many-sorted monoids:

$$
1_A: A \to A \quad \text{(unit)} \quad \frac{p: A \to B \quad q: B \to C}{p; q: A \to C} \quad \text{(multiplication)}
$$

- \bullet Objects A, B, ... sorts, Morphisms $p: A \rightarrow B$ programs
- \bullet Fact: monoid = single-object category
- ' Kleene-Kozen categories additionaly

$$
0_{A,B}: A \to B \qquad \frac{p: A \to B \qquad q: A \to B}{p+q: A \to B} \qquad \frac{p: A \to A}{p^*: A \to A}
$$

subject to Kleene algebra laws

- Fact: Kleene algebra $=$ single-object Kleene-Kozen category
- \bullet Example: Category of relations $=$ relational interpretation

• Tests = particular morphisms
$$
b: A \rightarrow A
$$

Monads

Monad T (\simeq Kleisli tripple)

- assigns object TA to every object A
- \bullet defines unit morphisms $\eta_A : A \rightarrow TA$
- lifts every $f: A \rightarrow TB$ to $f^*: TA \rightarrow TB$

(monad laws omitted)

We thus can compose Kleisli morphisms \rightsquigarrow Kleisli category:

$$
\frac{p: A \to TB \qquad q: B \to TC}{p; q^*: A \to TC}
$$

Example: $T = P$, Kleisli category \approx category of relations

Definition: Kleene monads are those, whose Kleisli category is Kleene-Kozen

Kleene Monads

Monads help us to make "robustness" idea formal via monad transformers

' Kleene monads are closed (robust) under writer transformer:

```
T \mapsto T(A^* \times -)
```
' Kleene monads are not closed under exception transformer:

 $T \mapsto T(-+E)$

' ... also not closed under coalgebraic resumption transformer:

$$
T\mapsto \nu\gamma.\ T(-+A\times \gamma)
$$

A candidate for may-diverge Kleene algebra: noting that $\mathfrak{P} \mathsf{X} \cong \{0, 1\}^\mathsf{X}$, take TX = $\{0, 1, \infty\}^{\mathsf{X}}$

Then consider $Hom(1, T1) \rightsquigarrow 1^* \neq 1$ because $1 \neq \infty$

[Categorifying Iteration](#page-16-0) 15/25

Coproducts and Elgot Iteration

- Coproducts $A \oplus B$ can be thought of as disjoint unions $A \oplus B$
- ' Elgot iteration:

$$
\frac{p \colon A \to B \oplus A}{p^{\dagger} \colon A \to B}
$$

Intuitively: keep running p until reached a result in B

- $\bullet\;\;(-)^\dagger$ is subject to rich and elaborated equational theory of iteration *
	- Very general
	- \bigcirc Stable under adding features
 \bigcirc Does not hinge on non-determ
	- \bigcirc Does not hinge on non-determinism
 \bigcirc Hinges on coproducts
	- \mathbb{G} Hinges on coproducts
 $\widehat{\mathbb{G}}$ Quasi-equational axion
	- Quasi-equational axiomatizations little explored

[˚]S. Bloom, Z. Ésik, Iteration Theories, 1993

Uniformity

Uniformity rule

for "well-behaved" h

 B loom and Esik's iteration $=$ Conway identities $+$ commutative identities finitely many infinitely many Commutative identities \subseteq Uniformity rule hard simple, standard

Uniform Elgot iteration is essentially just as robust and general

Reaxiomatizing Kleene Algebra

Alternative axiomatization: idempotent semirings, plus

 ${\sf p}^* = 1+{\sf p};{\sf p}^* \qquad ({\sf p}+{\sf q})^* = {\sf p}^*;({\sf q};{\sf p}^*)^*$ $1^* = 1$ $u; p = q; u$ $\mathfrak{u}; \mathfrak{p}^* = \mathfrak{q}^*; \mathfrak{u}$

- This is true for Kleene-Kozen categories, hence for Kleene algebra
- Removing $1^*=1$ yields may-diverge Kleene algebras, $(-)^*$ is no longer least fixpoint
- ' Uniformity

$$
u; p = q; u
$$

$$
u; p^* = q^*; u
$$

is postulated for all μ (!)

Like originally, u in

$$
u; p = q; u
$$

$$
u; p^* = q^*; u
$$

must generally be "well-behaved"

$$
\frac{\text{raise } e = \text{raise } e; 1 = 1; \text{raise } e = \text{raise } e}{\text{raise } e = \text{raise } e}}{\text{raise } e = \text{raise } e}
$$

raise
$$
e =
$$
 raise e ; $1 = 1$; raise $e =$ raise e

$$
\fbox{raise e} = \text{raise e}; 1* = \fbox{1*}; \text{raise e} \\
$$

Like originally, u in

$$
u; p = q; u
$$

$$
u; p^* = q^*; u
$$

must generally be "well-behaved"

 \Rightarrow Restrict to linear u:

$$
u; 0 = 0 \t u; (p+q) = u; p+u; q
$$

KiCT

Kleene-iteration category with tests (KiCT)

- ' Category with coproducts and nondeterminism
- ' Selected class of tests
- ' Selected class of linear tame morphisms
- ' Kleene iteration
- ' Laws:

0; p = 0 (p + q); r = p; r + q; r p ˚ = 1 + p; p ˚ (p + q) ˚ = p ˚;(q; p ˚) ˚ u; p ˚ = q ˚; u u; p = q; u

with tame 11

Key Results

- KiCT $+$ $(1^* = 1)$ with all morphisms tame $=$ Kleene-Kozen with tests and coproducts
- KiCT with expressive tests $=$ tame-uniform Conway iteration $+$ non-determinism
- \bullet Free KiCT = non-deterministic rational trees w.r.t. may-diverge nondeterminism

What is generic core of Kleene iteration?

KiCT:

- \bullet Core reasoning principles
- Θ Robustness under adding features
- \odot Generic completeness argument
- \odot Compatibility with classical program semantics

What is generic core of Kleene iteration?

KiCT:

- Core reasoning principles
- Θ Robustness under adding features
- \odot Generic completeness argument
- \odot Compatibility with classical program semantics

But what is KiCT without coproducts?

Coproducts and Non-Local Flow

What coproducts mean algebraically:

inl; $[p, q] = p$ inr; $[p, q] = q$ [inl, inr] = 1 [p, q]; r = [p; r, q; r]

This creates "non-local flow", i.e. via its type $A_1 \oplus ... \oplus A_n$ program can switch between tracks

This can be used to derive new identities, e.g.

$$
p^* = (p; (1+p))^*
$$

Alternatively to coproducts we could use names, e.g.

 $\mu X. (\alpha; \mu Y. (b; X + 1) + 1)$ for inl; [a; inr, b; inl]*

etc.

[Categorifying Iteration](#page-16-0) 23/25

Milner's Conundrum

- Milner^{*} realized that "regular behaviours" are properly more general than "*-hehaviours"
- ' Simplest example

$$
\begin{cases} X = 1 + a; Y \\ Y = 1 + b; X \end{cases}
$$

We can pass to $X = 1 + a$; $(1 + b; X)$, but not to $X = (ab)^*(1 + a)$

- This descrepancy \approx failure of Kleene theorem
- ' Milner's solution is equivalent to using coproducts in the language
- ' He also proposed a modification of Salomaa's system for *-behaviours – proven complete only recently (Grabmayer)

[˚]R. Milner, A complete inference system for a class of regular behaviours, 1984

Conclusions

- ' KiCTs reframe Kleene algebra principles in categorical setting and succeed with various yardsticks
- ' KiCTs without coproducts would be a hypothetical most basic notions of Kleene iteration
- ' Open Problem: Can it ever be found?

[Appendix](#page-34-0)

Example proof "by coinduction":

 $(ab)^* = 1 + a(ba)^*b$

[˚]A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

Example proof "by coinduction":

 $(ab)^* = 1 + a(ba)^*b$

is true, because $1+\mathfrak{a}(\textup{b}\mathfrak{a})^*$ b is a fixpoint of the map that defines $(\mathfrak{a}\mathfrak{b})^*$

 $1 + a(ba)*b = 1 + a(1 + (ba)(ba)*b)$

[˚]A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

Example proof "by coinduction":

 $(ab)^* = 1 + a(ba)^*b$

$$
1 + a(ba)*b = 1 + a(1 + (ba)(ba)*b
$$

= 1 + a1b + a(ba)(ba)*b

[˚]A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

Example proof "by coinduction":

 $(ab)^* = 1 + a(ba)^*b$

$$
1 + a(ba)*b = 1 + a(1 + (ba)(ba)*b = 1 + a1b + a(ba)(ba)*b = 1 + ab + (ab)a(ba)*b
$$

[˚]A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

Example proof "by coinduction":

 $(ab)^* = 1 + a(ba)^*b$

$$
1 + a(ba)*b = 1 + a(1 + (ba)(ba)*b = 1 + a1b + a(ba)(ba)*b = 1 + ab + (ab)a(ba)*b = 1 + (ab)(a(ba)*b)
$$

[˚]A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

Example proof "by coinduction":

$$
(ab)^* = 1 + a(ba)^*b
$$

$$
1 + a(ba)*b = 1 + a(1 + (ba)(ba)*b
$$

= 1 + a1b + a(ba)(ba)*b
= 1 + ab + (ab)a(ba)*b
= 1 + (ab)(1 + a(ba)*b)

[˚]A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

Example proof "by coinduction":

$$
(ab)^* = 1 + a(ba)^*b
$$

is true, because $1+\mathfrak{a}(\textup{b}\mathfrak{a})^*$ b is a fixpoint of the map that defines $(\mathfrak{a}\mathfrak{b})^*$

$$
1 + a(ba)*b = 1 + a(1 + (ba)(ba)*b)
$$

= 1 + a1b + a(ba)(ba)*b
= 1 + ab + (ab)a(ba)*b
= 1 + (ab)(1 + a(ba)*b)

• This only works because $x \mapsto 1 + abx$ is guarded

• $x \mapsto 1 + (a + 1)x$ is un-guarded and has infinitely many fixpoints

This reasoning is complete for guarded iteration^{*}

What about general (Kleene) iteration?

[˚]A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

Salomaa's Complete Axiomatization

- e is guarded if
	- \bullet e is a letter
	- $^{\bullet}$ e = 0
	- $e = e_1e_2$ with e_1 or e_2 guarded
	- $e = e_1 + e_2$ with e_1 and e_2 guarded
- ' Salomaa originally defined dual empty word property (ewp): e has epw iff it is not guarded
- ... and, proposed complete axiomatization˚ w.r.t. language model:
	- ' A finite number of sound identities
	- ' plus rule:

$$
\frac{v = e + uv \quad u \quad \text{guarded}}{v = u^* e}
$$

[˚]A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

No Finite Equational Axiomatization

Redko˚ noticed that

' All identities (power identities)

$$
\varepsilon^*=(\varepsilon^k)^*(1+\varepsilon+\ldots+\varepsilon^{k-1})
$$

are sound

- ' Any finite set of sound equations entails only finitely many of them
- ' Hence, no finite axiomatizability (even on one-letter alphabet)

So,

 $\left($? How to choose infinite set of non-obvious axioms of iteration? å How would we know that this choice is correct?

[˚]V. N. Redko, On defining relations for the algebra of regular events, 1964

Conway's Monograph

Conway˚ came up with various insights:

' Power identities do not suffice, e.g. they do not imply

$$
(e+u)^* = ((e+u)(u + (eu^*)^{n-2}e))^*
$$

$$
(1 + (e+u)\sum_{i=0}^{n-2} (eu^*)^i)
$$

- ' Made several conjectures on potential complete axiomatization
- Observed that algebraic laws of regular expressions transfer to matrices of regular expressions

 $\mathbf{\hat{Y}} \Rightarrow$ Bridge between algebra and automata (represented by matrices)

[˚]J. H. Conway, Regular Algebra and Finite Machines, 1971

Matrices of Regular Expressions

 \bullet ($n \times n$)-matrices of regular expressions support same operations. For $n = 2$:

"
\n1" is
$$
I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
$$
 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} = \begin{bmatrix} a+a' & b+b' \\ c+c' & d+d' \end{bmatrix}$
\n"
\n0" is $O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} = \begin{bmatrix} aa'+bc' & ab'+bd' \\ ca'+dc' & cb'+dd' \end{bmatrix}$

- **Idea** for A^* : $I + A + A^2 + ...$ Ω Key insight: there is closed form for A^* as matrix of regular expressions
- Intuition: in $\begin{bmatrix} e_{11} & e_{12} \ e_{21} & e_{22} \end{bmatrix} = A^*$, e_{ij} represents language of 2-state automaton where i – initial, j – final

[Appendix](#page-34-0) 6/9

start
\n
$$
a,b
$$

\n \uparrow
\n \uparrow
\n \uparrow
\n $\left[\begin{array}{ccc|c} 1 \\ 0 \end{array}\right]^\top \left[\begin{array}{ccc|c} 0 & a+b \\ a & b \end{array}\right]^* \left[\begin{array}{ccc|c} 1 \\ 0 \end{array}\right]$
\n $\left[\begin{array}{ccc|c} 1 \\ 0 \end{array}\right]^\top \left[\begin{array}{ccc|c} ((a+b)b^*a)^* & ((a+b)b^*a)^* \\ (b^*a(a+b))^*a & b^*(a(a+b))^* \end{array}\right] \left[\begin{array}{ccc|c} 1 \\ 0 \end{array}\right]$
\n \uparrow
\n $((a+b)b^*a)^*$

Control in Category

- Call morphisms of the form $d: A \rightarrow A \oplus A$ decisions
	- \bullet In particular: ff left injection, tt right injection
- ' We then can express if-then-else:

$$
\frac{d: A \to A \oplus A \qquad p: A \to B \qquad q: A \to B}{\text{if } d \text{ then } p \text{ else } q: A \to B}
$$

• In particular: $-d =$ if d then ff else tt, $(d || e) =$ if d then tt else e ' Various expected laws are entailed, but some are not, e.g.

d || tt \neq tt

Uniform Conway While-Operator

Theorem^{*}: if the class of decisions is large enough, uniform Conway iteration is equivalent to while-loops

Axioms:

while d do $p =$ if d then p; (while d do p) else 1 while $(d \parallel e)$ do $p = (while d do p)$; while e do $(p; while d do p)$ while $(d \& (e || \t{tt}) \& (e \t{tt}) \t{d} \& (f \t{t}) = \t{d} \cdot d \cdot d \cdot d \cdot$ (if e then p else p)

Uniformity Rule:

u; if d then p; tt else $ff = if e$ then q; u; tt else v; ff u; while d do $p = ($ while e do q $); v$

where u, v come from a selected class of programs

[˚]S. Goncharov, Shades of Iteration: From Elgot to Kleene, 2023

Tests and Decisions

• In presence of non-determinism, decisisons $d: A \rightarrow A \oplus A$ decompose:

$$
d = b; tt + \bar{b}; ff \qquad (b, \bar{b}: A \to A)
$$

' Test-based 'if' and 'while':

Axioms:

while b do $p =$ if b then p; (while b do p) else 1 while $(b \vee c)$ do $p = ($ while b do p $)$; while c do $(p;$ while b do p $)$

Uniformity:

$$
u; b; p = c; q; u \qquad u; \overline{b} = \overline{c}; v
$$

u; while b do p = (while c do q); v