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Overview

What I will talk about:
‚ Compositionality
‚ Modularity
‚ Genericity
‚ Design
‚ Semantics

What I wont talk about:
‚ Efficiency
‚ Optimization
‚ Computation Complexity
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Background

 Goncharov, “Shades of Iteration: From Elgot to Kleene”,
WADT 2022

 Goncharov and Uustalu, “A Unifying Categorical View of
Nondeterministic Iteration and Tests”, CONCUR 2024
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Regular Events

start a

b

a

a
b b

E.g. (b+ a(ab˚a)b)˚(1+ aa)

‚ Kleene star e ÞÑ e˚

‚ Kleene theorem
‚ Syntax for finite state machines
‚ Algebraic equational reasoning
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Language Interpretation

Regular expressions over Σ:

e, e1, e2 ::= (a P Σ) | 0 | 1 | e1 + e2 | e1; e2 | e˚

‚ Language interpretation:

J0K = t u Je1; e2K = txy | x P Je1K,y P Je2Ku

J1K = tϵu Je1 + e2K = Je1K Y Je2K

Je˚K = tϵu Y JeK Y Je; eK Y . . .

‚ Language L Ď Σ‹ is regular iff L = JeK for some regular expression e
with JaK = a for a P Σ

 Other interpretations? Yes, e.g. relational one!

 Complete reasoning system for regular expressions
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Axioms of Kleene Algebra

Kleene algebra is a structure (S, 0, 1,+, ; , (--)˚), where (S, 0, 1,+, ; ) is an
idempotent semiring:

‚ (S, 0,+) and (S, 1, ; ) are monoids
‚ (S, 0,+) is commutative (x+y = y+x) and idempotent (x+x = x)
‚ distributive laws:

x; (y+ z) = x;y+ x; z x; 0 = 0

(x+ y); z = x; z+ y; z 0; x = 0

(thus, S is partially ordered: x ď y iff x+ y = y)

... plus Kleene iteration satisfying x˚ = 1+ x; x˚, and

x;y+ z ď y

x˚; z ď y

x+ z;y ď z

x;y˚ ď z

Equivalently: x˚; z is a least fixpoint of x; (--) + z and z;y˚ is a least
fixpoint of (--);y+ z
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Key (Design) Features

‚ Complete both over language model and over relational model
‚ Algebraic, i.e. closed under substitution, unlike Salomaa’s rule˚

y = z+ xy x guarded
y = x˚z

‚ All fixpoints are least (pre-)fixpoints
‚ in Salomaa’s system: particular fixpoints are unique fixpoints

‚ Induction rules

x;y+ z ď y

x˚; z ď y

x+ z;y ď z

x;y˚ ď z

encompass infinitely many identities, critical for completeness

˚A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966
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Tests for Control

‚ Intuition: 0 is a deadlock, 1 is a neutral program, ; is sequential
composition, + is non-deterministic choice

‚ Kleene algebra with tests (KAT) adds control via tests:
‚ Kleene sub-algebra B
‚ B is Boolean algebra under (0, 1, ; ,+)

‚ This enables encodings:

‚ Branching (if b thenp elseq) as b;p+ b;q
‚ Looping (while b do p) as (b;p)˚;b
‚ Hoare triples taup tbu as a;p;b = a;p

Example:

while b do p = if b thenp else (while b do p)
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Kleene Algebra Today

‚ Regular expressions
‚ Algebraic language of finite state machines and beyond
‚ Relational semantics of programs
‚ Relational reasoning and verification, e.g. via dynamic logic
‚ Plenty of extensions:

‚ modal ñ modal Kleene algebra (Struth et al.)
‚ stateful ñ KAT + B! (Grathwohl, Kozen, Mamouras)
‚ concurrent ñ concurrent Kleene algebra (Hoare et al.)
‚ nominal ñ nominal Kleene algebra (Kozen et al.)
‚ differential equations ñ differential dynamic logic (Platzer et al.)
‚ network primitives ñ NetKAT (Foster et al.)
‚ etc., etc., etc.

‚ decidability and completeness (most famously w.r.t. language
interpretation and relational interpretation)
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Beyond Kleene Algebra’s Iteration
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Scenario I: Exceptions

‚ Assumming that programs may raise exceptions: raise ei =
“raise exception ei”,

raise e1 = raise e1; 0 = 0 = raise e2; 0 = raise e2

‚ So, we cannot have more than one exception
‚ ... unless we discard the law

p; 0 = 0
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Scenario II: Branching Time

Processes

a a

b c

a

b c

are famously non-bisimular, failing Kleene algebra law

p; (q+ r) = p;q+ p; r
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Scenario III: Divergence

‚ Identity

(p+ 1)˚ = p˚

is provable in Kleene algebra, because p˚ is a least fixpoint
‚ Alternatively:

1˚ = 1

‚ Hence deadlock = divergence

 How to undo this?

 1˚ = 1 is not a Kleene algebra axiom
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What is generic core of Kleene iteration?

‚ Core reasoning principles
‚ Robustness under adding features (e.g. exceptions)
‚ Generic completeness argument
‚ Compatibility with classical program semantics

ñ Soundness of while-loop encoding
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Categorifying Iteration
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From Algebras to Categories

‚ Categories « many-sorted monoids:

1A : A Ñ A (unit)
p : A Ñ B q : B Ñ C

p;q : A Ñ C
(multiplication)

‚ Objects A,B, . . . – sorts, Morphisms p : A Ñ B – programs
‚ Fact: monoid = single-object category

‚ Kleene-Kozen categories – additionaly

0A,B : A Ñ B
p : A Ñ B q : A Ñ B

p+ q : A Ñ B

p : A Ñ A

p˚ : A Ñ A

subject to Kleene algebra laws
‚ Fact: Kleene algebra = single-object Kleene-Kozen category
‚ Example: Category of relations = relational interpretation

‚ Tests = particular morphisms b : A Ñ A
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Monads

Monad T (» Kleisli tripple)
‚ assigns object TA to every object A
‚ defines unit morphisms ηA : A Ñ TA

‚ lifts every f : A Ñ TB to f‹ : TA Ñ TB

(monad laws omitted)

We thus can compose Kleisli morphisms ⇝ Kleisli category:

p : A Ñ TB q : B Ñ TC

p;q‹ : A Ñ TC

Example: T = P, Kleisli category » category of relations

Definition: Kleene monads are those, whose Kleisli category is
Kleene-Kozen
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Kleene Monads
Monads help us to make “robustness” idea formal via monad transformers

‚ Kleene monads are closed (robust) under writer transformer:

T ÞÑ T(A‹ ˆ --)

‚ Kleene monads are not closed under exception transformer:

T ÞÑ T(--+E)

‚ ... also not closed under coalgebraic resumption transformer:

T ÞÑ νγ. T(--+A ˆ γ)

A candidate for may-diverge Kleene algebra: noting that PX – t0, 1uX,
take TX = t0, 1,∞uX

Then consider Hom(1, T1) ⇝ 1˚ ‰ 1 because 1 ‰ ∞
Categorifying Iteration 15/25



Coproducts and Elgot Iteration

‚ Coproducts A ‘ B can be thought of as disjoint unions A Z B

‚ Elgot iteration:

p : A Ñ B ‘ A

p: : A Ñ B

Intuitively: keep running p until reached a result in B

‚ (´): is subject to rich and elaborated equational theory of iteration˚

⌣ Very general
⌣ Stable under adding features
⌣ Does not hinge on non-determinism
⌢ Hinges on coproducts
⌢ Quasi-equational axiomatizations little explored

˚S. Bloom, Z. Ésik, Iteration Theories, 1993
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Uniformity

Uniformity rule

A B ‘ A

C B ‘ C

h

f

1 ‘ h

g

ñ

A B

C

h

f:

g:

for “well-behaved” h

Bloom and Esik’s iteration = Conway identities
looooooooomooooooooon

finitely many

+ commutative identities
looooooooooooomooooooooooooon

infinitely many

Commutative identities
looooooooooooomooooooooooooon

hard

Ď Uniformity rule
looooooomooooooon

simple, standard

Uniform Elgot iteration is essentially just as robust and general
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Reaxiomatizing Kleene Algebra

Alternative axiomatization: idempotent semirings, plus

p˚ = 1+ p;p˚ (p+ q)˚ = p˚; (q;p˚)˚

1˚ = 1
u;p = q;u

u;p˚ = q˚;u

‚ This is true for Kleene-Kozen categories, hence for Kleene algebra
‚ Removing 1˚ = 1 yields may-diverge Kleene algebras, (´)˚ is no

longer least fixpoint
‚ Uniformity

u;p = q;u

u;p˚ = q˚;u

is postulated for all u (!)
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Restricting Uniformity

Like originally, u in

u;p = q;u

u;p˚ = q˚;u

must generally be “well-behaved”

ñ Restrict to linear u:

u; 0 = 0 u; (p+ q) = u;p+ u;q
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Restricting Uniformity

raise e = raise e; 1 = 1; raise e = raise e

raise e = raise e; 1˚ = 1˚; raise e

 Need not hold in may-diverge Kleene algebras
ñ Restrict to linear u:

u; 0 = 0 u; (p+ q) = u;p+ u;q
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KiCT

Kleene-iteration category with tests (KiCT)
‚ Category with coproducts and nondeterminism
‚ Selected class of tests
‚ Selected class of linear tame morphisms
‚ Kleene iteration
‚ Laws:

0;p = 0 (p+ q); r = p; r+ q; r

p˚ = 1+ p;p˚ (p+ q)˚ = p˚; (q;p˚)˚

u;p˚ = q˚;u

u;p = q;u
with tame u
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Key Results

‚ KiCT + (1˚ = 1) with all morphisms tame = Kleene-Kozen with
tests and coproducts

‚ KiCT with expressive tests = tame-uniform Conway iteration +
non-determinism

‚ Free KiCT = non-deterministic rational trees w.r.t. may-diverge
nondeterminism
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What is generic core of Kleene iteration?

KiCT:

○ Core reasoning principles
○ Robustness under adding features
○ Generic completeness argument
○ Compatibility with classical program semantics

But what is KiCT without coproducts?

Categorifying Iteration 22/25



What is generic core of Kleene iteration?

KiCT:

○ Core reasoning principles
○ Robustness under adding features
○ Generic completeness argument
○ Compatibility with classical program semantics

But what is KiCT without coproducts?

Categorifying Iteration 22/25



Coproducts and Non-Local Flow

What coproducts mean algebraically:

inl; [p,q] = p inr; [p,q] = q [inl, inr] = 1 [p,q]; r = [p; r,q; r]

This creates “non-local flow”, i.e. via its type A1 ‘ . . . ‘ An program can
switch between tracks

This can be used to derive new identities, e.g.

p˚ = (p; (1+ p))˚

Alternatively to coproducts we could use names, e.g.

µX. (a;µY. (b;X+ 1) + 1) for inl; [a; inr,b; inl]˚

etc.
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Milner’s Conundrum

‚ Milner˚ realized that “regular behaviours” are properly more general
than “˚-behaviours“

‚ Simplest example
#

X = 1+ a; Y

Y = 1+ b;X

We can pass to X = 1+ a; (1+ b;X), but not to X = (ab)˚(1+ a)

‚ This descrepancy « failure of Kleene theorem
‚ Milner’s solution is equivalent to using coproducts in the language
‚ He also proposed a modification of Salomaa’s system for

˚-behaviours – proven complete only recently (Grabmayer)

˚R. Milner, A complete inference system for a class of regular behaviours, 1984
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Conclusions

‚ KiCTs reframe Kleene algebra principles in categorical setting and
succeed with various yardsticks

‚ KiCTs without coproducts would be a hypothetical most basic
notions of Kleene iteration

‚ Open Problem: Can it ever be found?
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Equivalence of Expressions

Example proof "by coinduction":

(ab)˚ = 1+ a(ba)˚b

is true, because 1+ a(ba)˚b is a fixpoint of the map that defines (ab)˚

1+ a(ba)˚b = 1+ a(1+ (ba)(ba)˚)b

= 1+ a1b+ a(ba)(ba)˚b

= 1+ ab+ (ab)a(ba)˚b

= 1+ (ab)(a(ba)˚b)

‚ This only works because x ÞÑ 1+ abx is guarded
‚ x ÞÑ 1+ (a+ 1)x is un-guarded and has infinitely many fixpoints

This reasoning is complete for guarded iteration˚

 What about general (Kleene) iteration?

˚A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966
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Salomaa’s Complete Axiomatization

‚ e is guarded if
‚ e is a letter
‚ e = 0
‚ e = e1e2 with e1 or e2 guarded
‚ e = e1 + e2 with e1 and e2 guarded

‚ Salomaa originally defined dual
empty word property (ewp):
e has epw iff it is not guarded

‚ ... and, proposed complete
axiomatization˚ w.r.t. language
model:

‚ A finite number of sound identities
‚ plus rule:

v = e+ uv u guarded
v = u˚e

˚A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966
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No Finite Equational Axiomatization

Redko˚ noticed that

‚ All identities (power identities)

e˚ = (ek)˚(1+ e+ . . .+ ek´1)

are sound
‚ Any finite set of sound equations

entails only finitely many of them
‚ Hence, no finite axiomatizability

(even on one-letter alphabet)

So,

 How to choose infinite set of non-obvious axioms of iteration?

 How would we know that this choice is correct?

˚V. N. Redko, On defining relations for the algebra of regular events, 1964
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Conway’s Monograph

Conway˚ came up with various insights:

‚ Power identities do not suffice,
e.g. they do not imply

(e+ u)˚ =
(
(e+ u)(u+ (eu˚)n´2e)

)˚(
1+ (e+ u)

ÿn´2

i=0
(eu˚)i

)
‚ Made several conjectures on

potential complete axiomatization
‚ Observed that algebraic laws

of regular expressions transfer to
matrices of regular expressions

 ñ Bridge between algebra and automata (represented by matrices)

˚J. H. Conway, Regular Algebra and Finite Machines, 1971
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Matrices of Regular Expressions

‚ (n ˆ n)-matrices of regular expressions support same operations.
For n = 2:

“1” is I =

[
1 0
0 1

] [
a b
c d

]
+

[
a 1 b 1

c 1 d 1

]
=

[
a+ a 1 b+ b 1

c+ c 1 d+ d 1

]

“0” is O =

[
0 0
0 0

] [
a b
c d

] [
a 1 b 1

c 1 d 1

]
=

[
aa 1 + bc 1 ab 1 + bd 1

ca 1 + dc 1 cb 1 + dd 1

]
‚ Idea for A˚: I+A+A2 + . . .

 Key insight: there is closed form for A˚ as matrix of regular
expressions

‚ Intuition: in
[
e11 e12
e21 e22

]
= A˚, eij represents language of 2-state

automaton where i – initial, j – final
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Automata and Matrices

‚ Automata are triples

A P t0, 1un, B P Enˆn, C P t0, 1un

E – certain class of regular expressions

‚ Accepted language:

JAJB˚CK
‚ Kleene theorem:

this is equivalence
between automata
and expressions
up to language
equality

start
a,b

a
b

õ[
1
0

]J [
0 a+ b
a b

]˚ [
1
0

]
õ[

1
0

]J [
((a+ b)b˚a)˚ ((a+ b)b˚a)˚

(b˚a(a+ b))˚a b˚(a(a+ b))˚

] [
1
0

]
õ

((a+ b)b˚a)˚
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Control in Category

‚ Call morphisms of the form d : A Ñ A ‘ A decisions
‚ In particular: ff – left injection, tt – right injection

‚ We then can express if-then-else:

d : A Ñ A ‘ A p : A Ñ B q : A Ñ B

if d thenp else q : A Ñ B

‚ In particular: ~d = if d then ff else tt, (d || e) = if d then tt else e

‚ Various expected laws are entailed, but some are not, e.g.

d || tt ‰ tt
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Uniform Conway While-Operator

Theorem˚: if the class of decisions is large enough, uniform Conway
iteration is equivalent to while-loops

Axioms:

while d do p = if d thenp; (while d do p) else 1

while (d || e) do p = (while d do p); while e do (p; while d do p)

while (d && (e || tt)) do p = while d do (if e thenp else p)

Uniformity Rule:

u; if d thenp; tt else ff = if e thenq;u; tt else v; ff

u; while d do p = (while e do q); v

where u, v come from a selected class of programs

˚S. Goncharov, Shades of Iteration: From Elgot to Kleene, 2023
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Tests and Decisions

‚ In presence of non-determinism, decisisons d : A Ñ A ‘ A
decompose:

d = b; tt+b̄; ff (b, b̄ : A Ñ A)

‚ Test-based ‘if’ and ‘while’:

Axioms:

whileb dop = if b thenp; (whileb dop) else 1

while (b _ c) dop = (whileb dop); while c do (p; whileb dop)

Uniformity:

u;b;p = c;q;u u; b̄ = c̄; v

u; whileb dop = (while c doq); v
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