

UNIVERSITY OF
BIRMINGHAM

From KAT through Monad-Based Hoare Logic to Stone Duality

Sergey Goncharov

February 11, 2026

University of Birmingham

This Talk

A Relatively Complete Generic Hoare Logic for Order-Enriched Effects

Sergey Goncharov and Lutz Schröder
Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg
Email: (Sergey.Goncharov, Lutz.Schroeder)@cs.fau.de

This talk

(work in progress)

2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science

Stone Duality for Monads

Alyssa Renata Richard Garner

12 December 2025
Birmingham Theory Seminar

- Recap of Kleene algebra with Tests (KAT)
- How good is it for generic reasoning about programs?
- Categories and Monads
- Monad-based Hoare Logic
- Representing monads and Stone duality

Kleene Algebra with Tests

Kleene Algebra

Kleene algebra is

- Idempotent semiring $(S, 0, 1, +, ;)$
 - $(S, 0, +)$ is **commutative** and **idempotent** monoid
 - $(S, 1, ;)$ is monoid
 - **distributive laws**:

$$p; (q + r) = p; q + p; r$$

$$p; 0 = 0$$

$$(p + q); r = p; r + q; r$$

$$0; p = 0$$

(thus, S is partially ordered: $x \leq y$ iff $x + y = y$)

- ... plus, **Kleene iteration** p^* , such that

$$\boxed{p^*; q} = q + p; \boxed{p^*; q} \quad \text{and} \quad \boxed{q; p^*} = q + \boxed{q; p^*}; p$$

are **least solutions**, in particular: $p^* = 1 + p; p^* = 1 + p^*; p$

- Programming view: algebra elements = programs
 - 0 – divergence and/or deadlock, 1 – neutral program, etc.
- Kleene algebra with tests (KAT) adds control via tests:
 - Kleene sub-algebra B
 - B is Boolean algebra under $(0, 1, ;, +)$
 - alternatively (and non-trivially!), B supports complementation $\overline{(-)}$: $B \rightarrow B$, such that

$$a; \bar{a} = 0 \qquad \qquad a + \bar{a} = 1$$

- This enables encodings:
 - Branching **(if b then p else q)** as $b; p + \bar{b}; q$
 - Looping **(while b do p)** as $(b; p)^*; \bar{b}$
 - Hoare triples **{ a } p { b }** as $a; p; b = a; p$

Example: **while b do p = if b then p else (while b do p)**

Kleene Algebra: Use

- Regular expressions
- Algebraic language of **finite state machines** and beyond
- Relational semantics of programs
- Relational reasoning and verification, e.g. via **dynamic logic**
- Plenty of extensions:
 - modal \Rightarrow **modal Kleene algebra** (Struth et al.)
 - stateful \Rightarrow **KAT + B!** (Grathwohl, Kozen, Mamouras)
 - concurrent \Rightarrow **concurrent Kleene algebra** (Hoare et al.)
 - nominal \Rightarrow **nominal Kleene algebra** (Kozen et al.)
 - differential equations \Rightarrow **differential dynamic logic** (Platzer et al.)
 - network primitives \Rightarrow **NetKAT** (Foster et al.)
 - etc., etc., etc.
- **decidability** and **completeness** (most famously w.r.t. language interpretation and relational interpretation)

Fix set X

- Programs: relations $R \subseteq X \times X$
- $+$ = set-theoretic union
- $;$ = relational composition
- 0 – empty relation \emptyset , 1 – identity relation $\{(x, x) \mid x \in X\}$
- R^* = reflexive transitive closure $1 \cup R \cup R; R \cup \dots$

Tests:

- predicates $b \subseteq X$
- identified with relations $\{(x, x) \mid x \in b\}$

Soundness of Hoare Logic in KAT

Check soundness of rule

$$\frac{\{a\} p \{b\} \quad \{b\} q \{c\}}{\{a\} p; q \{c\}}$$

Recall encoding:

$$\{x\} r \{y\} \quad \equiv \quad x; r; y = x; r$$

Assume:

$$a; p; b = a; p \quad b; q; c = b; q$$

Thus:

$$\begin{aligned} a; p; q; c &= a; p; b; q; c && \text{(since } a; p = a; p; b\text{)} \\ &= a; p; b; q && \text{(since } b; q; c = b; q\text{)} \\ &= a; p; q \end{aligned}$$

KAT for Semantics?

- KAT incorporates many general and robust semantic idioms:
 - Tests as well-behaved programs
 - Encoding of **if** and **while** through tests
 - Equational encoding of Hoare triples
- It also incorporates many specific design choices, not ubiquitous in semantics
 1. Nondeterminism
 2. Identification of tests and assertions
 - b in $(\text{if } b \text{ then } p \text{ else } q)$ is **decision** (decidable predicate)
 - b in $\{a\} p \{b\}$ is **assertion** (possibly undecidable predicate)
 3. Restrictive axioms, e.g. right strictness $p; 0 = 0$ — ensuing analysis:
 - Goncharov, *Shades of Iteration: From Elgot to Kleene*
 - Goncharov, Uustalu, *A Unifying Categorical View of Nondeterministic Iteration and Tests*

Here: Dwell on 1 & 2!

KAT View:

- Programs form a monoid $(S, 1, ;)$
- 1 is “skip” program, ; models sequencing

Categorical View:

- A **category** is a many-object generalization of a monoid
- Objects = types / state spaces
- Morphisms $A \rightarrow B$ = programs from A to B
- Semirings \rightsquigarrow categories enriched in pointed semilattices

Example:

- Relational model \rightsquigarrow category of relations

Monad-Based Hoare Logic

Monads for Effects

- **Ambient categories:** $\mathbf{C} = \mathbf{Set}$, \mathbf{C} – domains, nominal sets, ...
- **Monads T on \mathbf{C} ,** to model effects, such as
 - Nondeterminism: $TX = \mathcal{P}X$
 - Store: $TX = S \rightarrow S \times X$
 - Exceptions: $TX = X + E$
 - Probability: $TX = \text{probability distributions}$

Definition (Monad = Kleisli Triple): $(T, \eta, (-)^\sharp)$ where for $f : A \rightarrow TB$ we have $f^\sharp : TA \rightarrow TB$ and

$$\eta^\sharp = \text{id} \quad \eta; f^\sharp = f \quad (g; f^\sharp)^\sharp = g^\sharp; f^\sharp$$

Definition (Kleisli category): \mathbf{C}_T : same objects as \mathbf{C} , morphisms $A \rightarrow B$ are $\mathbf{C}(A, TB)$, $\eta : A \rightarrow TA$ – identity, **Kleisli composition:** $f, g \mapsto (f : A \rightarrow TB); (g : B \rightarrow TC)^\sharp$

Example: Category of relations = $\mathbf{Set}_{\mathcal{P}}$

Strong Monads and Do-Notation

- Strong monads also support strength (\mathbf{C} must have products):

$$\tau_{A,B} : A \times TB \rightarrow T(A \times B)$$

- Then we can generalize sequencing in \mathbf{C}_T :

$$p : \Gamma \rightarrow TA, \quad f : \Gamma \times A \rightarrow TB \quad \mapsto \quad \mathbf{do} \, x \leftarrow p; f(x)$$

- Strong monad laws:

$$\mathbf{do} \, x \leftarrow p; \eta(x) = p$$

$$\mathbf{do} \, x \leftarrow \eta(t); f(x) = f(t)$$

$$\mathbf{do} \, x \leftarrow (\mathbf{do} \, y \leftarrow p; q); r = \mathbf{do} \, y \leftarrow p; x \leftarrow q; r$$

Examples:

- State monad: $\mathbf{do} \, x \leftarrow \mathbf{get}; \mathbf{put}(x + 1)$
- Nondeterminism: $\mathbf{do} \, x \leftarrow \{1, 2\}; y \leftarrow \{3, 4\}; \eta(x, y) = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$

- Enrichment in \mathbf{V} means: every $\text{Hom}(X, Y)$ is in \mathbf{V} , and compositions $f; (-)$, $(-); f$ are \mathbf{V} -morphisms
- Recall: KAT corresponds to enrichment in pointed semilattices
- Our design choice – à la domain theory: enrichment of \mathbf{C}_T in $\mathbf{bdCpo}_\perp =$
 - complete partial orders,
 - .. with least element \perp ,
 - .. and upper bounded sets have least upper bounds

Additionally, \perp and \sqcup are substitution-stable and

$$\mathbf{do} \, x \leftarrow \perp; p = \perp \quad \mathbf{do} \, x \leftarrow (p \sqcup q); r = \mathbf{do} \, x \leftarrow p; r \sqcup \mathbf{do} \, x \leftarrow p; r$$

(not e.g. $\mathbf{do} \, x \leftarrow p; \perp = \perp$ – e.g. failed by exception monad)

Note: Our \mathbf{bdCpo}_\perp -monads $\neq \mathbf{bdCpo}_\perp$ -enriched monads!

Examples of bdCpo_\perp -Monads

Examples of bdCpo_\perp -monads:

- **Powerset monad** \mathcal{P} (non-deterministic functions)
- **Partiality monad** $X_\perp = X + 1$ (partial functions)
- **Partial store monad** $TX = S \rightarrow (X \times S)_\perp$ (reading/writing from store)
- **Countable subdistribution monad** $TX = \{d: X \rightarrow [0, 1] \mid \sum d \leq 1\}$

Non-Examples

- Non-empty powerset/distributions/store (no \perp)
- Finite powerset/finite distributions (no directed joins)

Tests as Decisions

- Standard semantics of if-then-else: given $b: \Gamma \rightarrow 1 + 1 = 2$ and $p, q: \Gamma \rightarrow A$

$$\mathbf{if}\ b\ \mathbf{then}\ p\ \mathbf{else}\ q = \mathbf{case}\ b\ \mathbf{of}\ \mathbf{inl}_ \mapsto p; \mathbf{inr}_ \mapsto q$$

- This is general enough: for $b: X \rightarrow T2$, we can define

$$\mathbf{if}\ b\ \mathbf{then}\ p\ \mathbf{else}\ q = \mathbf{do}\ x \leftarrow b; \mathbf{if}\ x\ \mathbf{then}\ p\ \mathbf{else}\ q$$

Tests as Assertions

- Define $?: 2 \rightarrow T1$

$$b? = \mathbf{if } b \mathbf{then } \eta(\star) \mathbf{else } \perp$$

- It can be shown that

$$\mathbf{if } b \mathbf{then } p \mathbf{else } q = \mathbf{do } b?; p \sqcup \mathbf{do } \bar{b}?; q,$$

like in KAT!

- This uses bounded completeness

While-Loops

- Given $b: \Gamma \rightarrow 2$, $p: \Gamma \rightarrow T1$, **while** b **do** p is the least solution of equation

$$\mathbf{while}\ b\ \mathbf{do}\ p = \mathbf{if}\ b\ \mathbf{then}\ (\mathbf{do}\ p;\ \mathbf{while}\ b\ \mathbf{do}\ p)\ \mathbf{else}\ \eta(\star)$$

- This can be computed thanks to enrichment by Kleene fixpoint theorem

- We have conversion $? : 2 \rightarrow T1$ from tests to assertions
- But not all programs in $T1$ may be assertions,
e.g. for partial store monad $T1 = S \rightarrow S \times 2$
- So, how can we specify assertions?

Definition (Innocent Monads): \mathbf{bdCpo}_\perp -monad P is **innocent** if it is

- **commutative**: $\mathbf{do} x \leftarrow p; y \leftarrow q; \eta(x, y) = \mathbf{do} y \leftarrow q; x \leftarrow p; \eta(x, y)$
- **copy-monad**: $\mathbf{do} x \leftarrow p; y \leftarrow p; \eta(x, y) = \mathbf{do} x \leftarrow p; \eta(x, x)$
- **weakly discardable**: $\mathbf{do} x \leftarrow p; \eta(\star) \sqsubseteq \eta(\star)$

One consequence: $p \sqcap q = \mathbf{do} p; q$ (like in KAT!)

Example: Partial reader monad $PX = S \rightarrow X + 1$

Definition (Assertions): **Assertions** are morphisms $\Gamma \rightarrow P1$ for innocent monad P

Recall that set F is called **frame** if

- F is lattice
- F has all joins
- F validates **frame distributively**: $a \wedge \bigvee_{i \in I} b_i = \bigvee_{i \in I} (a \wedge b_i)$

Theorem: Assertions $\Gamma \rightarrow P1$ form a frame, in particular internal **Heyting algebra**

Thus, we can interpret over $P1$: logical connectives, quantifiers, fixpoints of predicates

Example: For partial reader monad, $P1 = S \rightarrow 2 \cong \mathcal{P}(S)$ – Boolean algebra of predicates on S

Hoare Triples

- Given \mathbf{bdCpo}_\perp -monad T with innocent submonad P , we interpret Hoare triples

$$\{\phi\} x \leftarrow p \{\psi(x)\} \equiv \mathbf{do} \phi; x \leftarrow p; \psi(x); \eta(x) = \mathbf{do} \phi; p$$

- This allows defining generic Hoare calculus
- Main result of our LICS 2013 paper: soundness and relative completeness
- Proof idea: show expressibility of weakest (liberal) preconditions

$$\mathbf{wp}(x \leftarrow p, \psi(x)) = \bigsqcup \{\phi \mid \{\phi\} x \leftarrow p \{\psi(x)\}\}$$

For example: $\mathbf{wp}(\mathbf{while} b \mathbf{do} p, \psi) = \nu\gamma. \mathbf{if} b \mathbf{then} \mathbf{wp}(p, \gamma) \mathbf{else} \psi$

Representing Innocent Monads

\mathbf{bdCpo}_\perp -monads are very general, but innocent monads tend to be specific

Examples:

- Starting from subdistributions $TX = \{d: X \rightarrow [0, 1] \mid \sum d \leq 1\}$, the largest copy-submonad is maybe-monad $PX = X + 1$
- Largest weekly discardable submonad of partial store monad $TX = S \rightarrow S \times X + 1$ is partial reader monad $PX = S \rightarrow X + 1$

We can very generally define “largest copy submonad” and “largest weekly discardable submonad” by equalizers, e.g.

$$PX \longrightarrow TX \xrightleftharpoons[\psi \circ \Delta]{T\Delta} T(X \times X)$$

Not “largest commutative submonad”! But weakly-discardable copy-monads tend to be commutative

Representability Question

Question: Is every innocent monad on **Set** submonad of partial reader monad

$$PX = S \rightarrow X + 1$$

for some S ?

Frame Monad

Given frame F , $TX = F^X$ extends to monad on **Set**:

- $\eta(x)(x') = \begin{cases} \top & (x = x') \\ \perp & (x \neq x') \end{cases}$
- **do** $x \leftarrow p; f(x) = y \mapsto \bigsqcup_x p(x) \sqcap f(x)(y)$

Frame monads are almost innocent, but fail to be copy

Example: If $F = 2$, $TX = 2^X$ – powerset monad:

$$\mathbf{do} \ x \leftarrow p; f(x) = \bigcup_x \{y \mid x \in p \wedge y \in f(x)\} = \bigcup_{x \in p} f(x)$$

Representability in Frame Monads

Theorem: Let P be innocent monad. Then P is isomorphic to largest copy-submonad of $P1^{(-)}$, and isomorphism preserves order

Isomorphism $\alpha: P \rightarrow P1^{(-)}$:

$$\alpha_X(p \in PX)(x \in X) = (P !)(p \sqcap \eta(x))$$

Copy submonad is identified by condition

$$x \neq y \implies p(x) \sqcap p(y) = \perp \quad (p: X \rightarrow P1)$$

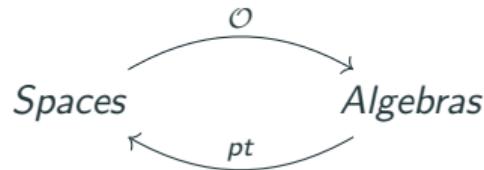
Example: Start with $PX = S \rightarrow X + 1 \rightsquigarrow P1^X = (2^S)^X \cong S \rightarrow \mathcal{P}(X)$

Copy condition for $p, q: S \rightarrow \mathcal{P}(X)$: $p(s) \cap q(s) = \emptyset \rightsquigarrow$ largest copy-submonad is P

Topological State Monad

- Let S be any topological space, and $\mathcal{O}(S)$ be its frame of opens
- Topological state monad (on **Set!**): $TX = S \rightarrow_{cont} X_\perp$ (continuous functions) to one-point compactification of discrete space X
- $P1 = 1_\perp^S \cong \mathcal{O}(S)$ where 1_\perp – Sierpiński space
- By restricting to copy-submonad of $(\mathcal{O}(S))^{(-)}$, we thus identify S as points of frame of opens $\mathcal{O}(S)!$

Generally, **Stone dualities**:



Examples:

- Spaces = Stone spaces, Algebras = Boolean algebras
- Spaces = Sets, Algebras = Complete atomic Boolean algebras
- Spaces = Sober spaces, Algebras = Spatial frames

Spatial frames = frames with “enough points” = isomorphic to $\mathcal{O}(S)$ of some space
= those F , for which any $p, q \in F$ can be separated by some frame morphism $F \rightarrow 2$

Definition: Call Innocent monad P **spatial** if $P1$ is spatial frame

Theorem: Every spatial innocent monad embeds into a partial reader monad

Proof Idea: State space S = frame morphisms $P1 \rightarrow 2$ = completely prime filters

Monad morphism $\alpha_X: PX \rightarrow (S \rightarrow X + 1)$:

$$\alpha_X(p \in PX)(s: P1 \rightarrow 2) = \begin{cases} \mathbf{inl} x & \text{if } s(\delta_x^\sharp(p)) = \top \\ \mathbf{inr} \star & \text{otherwise} \end{cases}$$

where $\delta_x(x) = \eta(\star)$, $\delta_x(x') = \perp$

Conjecture: For non-spatial P there is no embedding of P to partial state monad, preserving both meets and joins

- Potential example: largest copy submonad of $F^{(-)}$ with F – frame (actually, Boolean algebra) of **regular opens** of $[0, 1]$
(Regular opens = opens that are equal to interiors of their closure)
- Regular opens embed to all opens \rightsquigarrow possibly, we can embed to partial state monad, if not insist on join preservation

Further Work

- When exactly embedding holds?
- How good/bad can it be (Meet-preserving? Order-preserving?)
- Any impact of accessibility (=rank)?
- Representation for complete semiring module monads $S^{(-)}$ (S – complete semiring)
- Related: Representation for innocence, without copy