UNIVERSITYOF
BIRMINGHAM

From KAT through Monad-Based Hoare Logic to
Stone Duality

Sergey Goncharov
February 11, 2026

University of Birmingham

https://brown.edu

This Talk

2013 28th Annual ACM/IEEE Logic in Comp

A Relatively Complete Generic Hoare Logic
for Order-Enriched Effects

Stone Dpdli’éj
@@3" f‘\;}wads

This talk

(work in progress)

Plan

Recap of Kleene algebra with Tests (KAT)

How good is it for generic reasoning about programs?

Categories and Monads

e Monad-based Hoare Logic

Representing monads and Stone duality

Kleene Algebra with Tests

Kleene Algebra

Kleene algebra is

e Idempotent semiring (S,0,1,+,;)
e (S5,0,+) is commutative and idempotent monoid
e (5,1,;) is monoid
e distributive laws:
pi(q+r)=piqg+pir p;0=0
(p+a)ir=pir+aqr 0;p=0
(thus, S is partially ordered: x < y iff x+y =)

e ... plus, Kleene iteration p*, such that

=q+p: and :q+;p

are least solutions, in particular: p* =1+ p;p* =1+ p*;p

. with Tests

e Programming view: algebra elements = programs
e 0 — divergence and/or deadlock, 1 — neutral program, etc.
e Kleene algebra with tests (KAT) adds control via tests:

e Kleene sub-algebra B
e B is Boolean algebra under (0,1,;,+)

e alternatively (and non-trivially!), B supports complementation (~): B — B, such that

aa=0 ata=1
e This enables encodings:
e Branching (if bthen pelse q) as b;p+ b;q
e Looping (while bdo p) as (b;p)*; b
e Hoare triples {a} p{b} as ap;b=a;p

Example: while bdo p = if bthen pelse (while bdo p)

Kleene Algebra: Use

e Regular expressions

e Algebraic language of finite state machines and beyond

Relational semantics of programs

Relational reasoning and verification, e.g. via dynamic logic

Plenty of extensions:
e modal = modal Kleene algebra (Struth et al.)
e stateful = KAT + B! (Grathwohl, Kozen, Mamouras)
e concurrent = concurrent Kleene algebra (Hoare et al.)
e nominal = nominal Kleene algebra (Kozen et al.)
o differential equations = differential dynamic logic (Platzer et al.)
e network primitives = NetKAT (Foster et al.)
e etc., etc., etc.

e decidability and completeness (most famously w.r.t. language interpretation and relational
interpretation)

KAT: Relational Model

Fix set X

e Programs: relations R C X x X

e + = set-theoretic union

e ; = relational composition

e 0 — empty relation {), 1 — identity relation {(x,x) | x € X}
e R* = reflexive transitive closure ITURUR; RU ...

Tests:

e predicates b C X
e identified with relations {(x,x) | x € b}

Soundness of Hoare Logic in KAT

Check soundness of rule

{atp{b} {b}q{c}

{a} p; g {c}
Recall encoding:
x}ri{y} = xiny=xr
Assume:
ap;b=ap b;q;c=b;q
Thus:
a,p;q;c=a;p;b;q;c (since a; p = a; p; b)
=a;p; b;q (since b; g; c = b; q)

=apq

KAT for Semantics?

e KAT incorporates many general and robust semantic idioms:
e Tests as well-behaved programs
e Encoding of if and while through tests
e Equational encoding of Hoare triples
e It also incorporates many specific design choices, not ubiquitous in semantics
1. Nondeterminism
2. ldentification of tests and assertions

e bin (if bthen pelse q) is decision (decidable predicate)
e bin {a} p{b} is assertion (possibly undecidable predicate)

3. Restrictive axioms, e.g. right strictness p; 0 = 0 — ensuing analysis:

e Goncharov, Shades of Iteration: From Elgot to Kleene
e Goncharov, Uustalu, A Unifying Categorical View of Nondeterministic Iteration and Tests

Here: Dwell on 1& 2!

Category Theory for Semantics

KAT View:

e Programs form a monoid (S,1,;)

e 1is “skip” program, ; models sequencing
Categorical View:

e A category is a many-object generalization of a monoid
e Objects = types / state spaces
e Morphisms A — B = programs from A to B

e Semirings ~~ categories enriched in pointed semilattices
Example:

e Relational model ~~ category of relations

Monad-Based Hoare Logic

Monads for Effects

e Ambient categories: C = Set, C — domains, nominal sets, ...
e Monads T on C, to model effects, such as
e Nondeterminism: TX = PX
Store: TX =S - Sx X
Exceptions: TX = X + E
Probability: TX = probability distributions

Definition (Monad = Kleisli Triple): (T, 7, ()*) where for f : A — TB we have
ff: TA— TB and

nﬁ —id n: ff—rf (g; fﬁ)ﬂ:gﬁ;fﬁ
Definition (Kleisli category): Cr: same objects as C, morphisms A — B are C(A, TB),
n: A — TA — identity, Kleisli composition: f,g + (f: A— TB);(g: B — TC)*

Example: Category of relations = Setp

10

Strong Monads and Do-Notation

e Strong monads also support strength (C must have products):
TaB:Ax TB— T(Ax B)
e Then we can generalize sequencing in Cr:
p:T—=TA f:TxA—-TB — dox<« p;f(x)

e Strong monad laws:

dox < n(t); f(x
dox < (doy + p;q);r=doy + p;x+ q;r
Examples:

e State monad: do x « get; put(x + 1)
e Nondeterminism: do x < {1,2};y < {3,4};in(x,y) = {(1,3),(1,4),(2,3),(2,4)}

11

Enrichment

e Enrichment in V means: every Hom(X, Y) is in V, and compositions f; (=), (—); f are
V-morphisms

e Recall: KAT corresponds to enrichment in pointed semilattices

e Our design choice — a la domain theory: enrichment of Ct in bdCpo, =

e complete partial orders,
e .. with least element L,
e .. and upper bounded sets have least upper bounds

Additionally, L and U are substitution-stable and
dox <+ L;p=1 dox <+ (pUg);r=dox «+ p;ridox <« p;r
(not e.g. dox < p; L = 1 —e.g. failed by exception monad)

Note: Our bdCpo | -monads # bdCpo , -enriched monads!

12

Examples of bdCpo, -Monads

Examples of bdCpo | -monads:

e Powerset monad P (non-deterministic functions)

e Partiality monad X, = X + 1 (partial functions)

e Partial store monad TX =S — (X x S), (reading/writing from store)
e Countable subdistribution monad TX = {d: X —[0,1] | Y d <1}

Non-Examples

e Non-empty powerset/distributions/store (no L)

e Finite powerset/finite distributions (no directed joins)

13

Tests as Decisions

e Standard semantics of if-then-else: given b: I — 14+ 1=2and p,qg: I — A
if bthenpelse g = case bofinl_— p; inr_— g
e This is general enough: for b: X — T2, we can define

if bthenpelse g = do x < b; if xthen pelse g

14

Tests as Assertions

e Define?7:2— T1
b? = if bthenn(x)else L
e [t can be shown that
if bthen pelse g = do b?; p Lido b?; q,

like in KAT!

e This uses bounded completeness

15

While-Loops

e Given b: I — 2, p: I — T1, while bdo p is the least solution of equation
while bdo p = if bthen (do p; while bdo p) else n(x)

e This can be computed thanks to enrichment by Kleene fixpoint theorem

16

Innocent Monads for Assertions

e We have conversion ?: 2 — T1 from tests to assertions

e But not all programs in T1 may be assertions,
e.g. for partial store monad T1=5 — § x 2

e So, how can we specify assertions?
Definition (Innocent Monads): bdCpo -monad P is innocent if it is

e commutative: dox < p;y < q;n(x,y) =doy < q;x < p;n(x,y)
e copy-monad: dox < p;y < p;n(x,y) =dox « p;n(x,x)
e weakly discardable: dox + p;n(x) E n(*)

One consequence: plq =dop;q (like in KAT!)

Example: Partial reader monad PX =S — X +1

17

Frame of Assertions

Definition (Assertions): Assertions are morphisms ' — P1 for innocent monad P

Recall that set F is called frame if

e F is lattice
e F has all joins

e F validates frame distributively: a A'\/;, bi = \/;c,(a A b;)

Theorem: Assertions ' — P1 form a frame, in particular internal Heyting algebra

Thus, we can interpret over P1: logical connectives, quantifiers, fixpoints of predicates

Example: For partial reader monad, P1 =S — 22 P(S) — Boolean algebra of predicates on S

18

Hoare

Triples

Given bdCpo | -monad T with innocent submonad P, we interpret Hoare triples

{0} x = p{(x)} = dog;x py(x)in(x) = doo;p

This allows defining generic Hoare calculus
Main result of our LICS 2013 paper: soundness and relative completeness

Proof idea: show expressibility of weakest (liberal) preconditions
wp(x p.9p(x)) = |_|[{¢ | {¢} x < p {v(x)}}

For example: wp(while bdo p, 1)) = v~.if bthenwp(p,) else ¢

19

Representing Innocent Monads

Innocent Monads on Set

bdCpo , -monads are very general, but innocent monads tend to be specific

Examples:

e Starting from subdistributions TX = {d: X — [0,1] | > d < 1}, the largest
copy-submonad is maybe-monad PX = X + 1

e Largest weekly discardable submonad of partial store monad TX =S5 - Sx X+ 1is
partial reader monad PX =S — X +1

We can very generally define “largest copy submonad” and “largest weekly discardable
submonad” by equalizers, e.g.

TA
PX — TX ?; T(X x X)

Not “largest commutative submonad”! But weakly-discardable copy-monads tend to be
commutative

20

Representability Question

Question: Is every innocent monad on Set submonad of partial reader monad
PX=S5S—->X+1

for some S?

21

Frame Monad

Given frame F, TX = FX extends to monad on Set:

N [T x=x)
1)) {L o)
e dox < p;f(x) =y L], p(x)Nf(x)(y)

Frame monads are almost innocent, but fail to be copy

Example: If F =2, TX = 2X - powerset monad:

dox « p; f(x) = Ux{y |xepAy€ef(x)}= Uxep f(x)

22

Representability in Frame Monads

Theorem: Let P be innocent monad. Then P is isomorphic to largest copy-submonad of
P1G) | and isomorphism preserves order

Isomorphism «o: P — P1(-):
ax(p € PX)(x € X) = (P1)(pTn(x))
Copy submonad is identified by condition
x#y = p(x)Nply)=L (p: X = PI1)

Example: Start with PX =S =+ X +1 ~ P1X =(2°)X=S - P(X)
Copy condition for p,g: S — P(X): p(s)Nqg(s)=0 ~ largest copy-submonad is P

23

Topological State Monad

Let S be any topological space, and O(S) be its frame of opens

Topological state monad (on Set!): TX =S — ., X1 (continuous functions) to
one-point compactification of discrete space X

P1 =13 =2 O(S) where 1, — Sierpiriski space

e By restricting to copy-submonad of (O(S))(=), we thus identify S as points of frame of
opens O(S)!

24

Stone Duality

Generally, Stone dualities:
@)

/_\

Spaces Algebras
\p_t/

Examples:

e Spaces = Stone spaces, Algebras = Boolean algebras

e Spaces = Sets, Algebras = Complete atomic Boolean algebras

e | Spaces = Sober spaces, Algebras = Spatial frames‘

Spatial frames = frames with “enough points” = isomorphic to O(S) of some space
= those F, for which any p,q € F can be separated by some frame morphism F — 2

25

Spatiality

Definition: Call Innocent monad P spatial if P1 is spatial frame
Theorem: Every spatial innocent monad embeds into a partial reader monad

Proof Idea: State space S = frame morphisms P1 — 2 = completely prime filters
Monad morphism ax: PX — (§ - X + 1):
inlx if s(6i(p)) =T
ax(p € PX)(s: P1 —2) =

inrx otherwise

where 0, (x) = n(x), ox(x’) = L

26

Current State

Conjecture: For non-spatial P there is no embedding of P to partial state monad, preserving
both meets and joins

e Potential example: largest copy submonad of F(=) with F — frame (actually, Boolean
algebra) of regular opens of [0, 1]

(Regular opens = opens that are equal to interiors of their closure)

e Regular opens embed to all opens ~» possibly, we can embed to partial state monad, if

not insist on join preservation

27

Further Work

When exactly embedding holds?

How good/bad can it be (Meet-preserving? Order-preserving?)

e Any impact of accessibility (=rank)?

Representation for complete semiring module monads S() (S - complete semiring)

Related: Representation for innocence, without copy

28

	Kleene Algebra with Tests
	Monad-Based Hoare Logic
	Representing Innocent Monads

