
From KAT through Monad-Based Hoare Logic to

Stone Duality

Sergey Goncharov

February 11, 2026

University of Birmingham

https://brown.edu


This Talk

This talk
(work in progress)

1



Plan

• Recap of Kleene algebra with Tests (KAT)

• How good is it for generic reasoning about programs?

• Categories and Monads

• Monad-based Hoare Logic

• Representing monads and Stone duality

2



Kleene Algebra with Tests



Kleene Algebra

Kleene algebra is

• Idempotent semiring (S , 0, 1,+, ; )

• (S , 0,+) is commutative and idempotent monoid

• (S , 1, ; ) is monoid

• distributive laws:

p; (q + r) = p; q + p; r p; 0 = 0

(p + q); r = p; r + q; r 0; p = 0

(thus, S is partially ordered: x ≤ y iff x + y = y)

• ... plus, Kleene iteration p∗, such that

p∗; q = q + p; p∗; q and q; p∗ = q + q; p∗ ; p

are least solutions, in particular: p∗ = 1 + p; p∗ = 1 + p∗; p

3



... with Tests

• Programming view: algebra elements = programs

• 0 – divergence and/or deadlock, 1 – neutral program, etc.

• Kleene algebra with tests (KAT) adds control via tests:

• Kleene sub-algebra B

• B is Boolean algebra under (0, 1, ; ,+)

• alternatively (and non-trivially!), B supports complementation (--) : B → B, such that

a; ā = 0 a+ ā = 1

• This enables encodings:

• Branching (if b then p else q) as b; p + b; q

• Looping (while b do p) as (b; p)∗; b

• Hoare triples {a} p {b} as a; p; b = a; p

Example: while b do p = if b then p else (while b do p)

4



Kleene Algebra: Use

• Regular expressions

• Algebraic language of finite state machines and beyond

• Relational semantics of programs

• Relational reasoning and verification, e.g. via dynamic logic

• Plenty of extensions:

• modal ⇒ modal Kleene algebra (Struth et al.)

• stateful ⇒ KAT + B! (Grathwohl, Kozen, Mamouras)

• concurrent ⇒ concurrent Kleene algebra (Hoare et al.)

• nominal ⇒ nominal Kleene algebra (Kozen et al.)

• differential equations ⇒ differential dynamic logic (Platzer et al.)

• network primitives ⇒ NetKAT (Foster et al.)

• etc., etc., etc.

• decidability and completeness (most famously w.r.t. language interpretation and relational

interpretation)

5



KAT: Relational Model

Fix set X

• Programs: relations R ⊆ X × X

• + = set-theoretic union

• ; = relational composition

• 0 – empty relation ∅, 1 – identity relation {(x , x) | x ∈ X}
• R⋆ = reflexive transitive closure 1 ∪ R ∪ R;R ∪ . . .

Tests:

• predicates b ⊆ X

• identified with relations {(x , x) | x ∈ b}

6



Soundness of Hoare Logic in KAT

Check soundness of rule
{a} p {b} {b} q {c}

{a} p; q {c}
Recall encoding:

{x} r {y} ≡ x ; r ; y = x ; r

Assume:

a; p; b = a; p b; q; c = b; q

Thus:
a; p; q; c = a; p; b; q; c (since a; p = a; p; b)

= a; p; b; q (since b; q; c = b; q)

= a; p; q

7



KAT for Semantics?

• KAT incorporates many general and robust semantic idioms:

• Tests as well-behaved programs

• Encoding of if and while through tests

• Equational encoding of Hoare triples

• It also incorporates many specific design choices, not ubiquitous in semantics

1. Nondeterminism
2. Identification of tests and assertions

• b in (if b then p else q) is decision (decidable predicate)

• b in {a} p {b} is assertion (possibly undecidable predicate)

3. Restrictive axioms, e.g. right strictness p; 0 = 0 — ensuing analysis:

• Goncharov, Shades of Iteration: From Elgot to Kleene

• Goncharov, Uustalu, A Unifying Categorical View of Nondeterministic Iteration and Tests

Here: Dwell on 1& 2!

8



Category Theory for Semantics

KAT View:

• Programs form a monoid (S , 1, ; )

• 1 is “skip” program, ; models sequencing

Categorical View:

• A category is a many-object generalization of a monoid

• Objects = types / state spaces

• Morphisms A→ B = programs from A to B

• Semirings ⇝ categories enriched in pointed semilattices

Example:

• Relational model ⇝ category of relations

9



Monad-Based Hoare Logic



Monads for Effects

• Ambient categories: C = Set, C – domains, nominal sets, . . .

• Monads T on C, to model effects, such as

• Nondeterminism: TX = PX

• Store: TX = S → S × X

• Exceptions: TX = X + E

• Probability: TX = probability distributions

Definition (Monad = Kleisli Triple): (T , η, ( )♯) where for f : A→ TB we have

f ♯ : TA→ TB and

η♯ = id η; f ♯ = f (g ; f ♯)♯ = g ♯; f ♯

Definition (Kleisli category): CT : same objects as C, morphisms A→ B are C(A,TB),

η : A→ TA – identity, Kleisli composition: f , g 7→ (f : A→ TB); (g : B → TC )♯

Example: Category of relations = SetP

10



Strong Monads and Do-Notation

• Strong monads also support strength (C must have products):

τA,B : A× TB → T (A× B)

• Then we can generalize sequencing in CT:

p : Γ→ TA, f : Γ× A→ TB 7→ do x ← p ; f (x)

• Strong monad laws:

do x ← p ; η(x) = p

do x ← η(t); f (x) = f (t)

do x ← (do y ← p ; q); r = do y ← p; x ← q ; r

Examples:

• State monad: do x ← get; put(x + 1)

• Nondeterminism: do x ← {1, 2}; y ← {3, 4}; η(x , y) = {(1, 3), (1, 4), (2, 3), (2, 4)}

Key point: Strength τ allows mixing pure values with effectful computations in a disciplined,

compositional way.

11



Enrichment

• Enrichment in V means: every Hom(X ,Y ) is in V, and compositions f ; (−), (−); f are

V-morphisms

• Recall: KAT corresponds to enrichment in pointed semilattices

• Our design choice – à la domain theory: enrichment of CT in bdCpo⊥ =

• complete partial orders,

• .. with least element ⊥,

• .. and upper bounded sets have least upper bounds

Additionally, ⊥ and ⊔ are substitution-stable and

do x ← ⊥; p = ⊥ do x ← (p ⊔ q); r = do x ← p ; r ⊔ do x ← p ; r

(not e.g. do x ← p ;⊥ = ⊥ – e.g. failed by exception monad)

Note: Our bdCpo⊥-monads ̸= bdCpo⊥-enriched monads!

12



Examples of bdCpo⊥-Monads

Examples of bdCpo⊥-monads:

• Powerset monad P (non-deterministic functions)

• Partiality monad X⊥ = X + 1 (partial functions)

• Partial store monad TX = S → (X × S)⊥ (reading/writing from store)

• Countable subdistribution monad TX =
{
d : X → [0, 1] |

∑
d ≤ 1

}
Non-Examples

• Non-empty powerset/distributions/store (no ⊥)
• Finite powerset/finite distributions (no directed joins)

13



Tests as Decisions

• Standard semantics of if-then-else: given b : Γ→ 1 + 1 = 2 and p, q : Γ→ A

if b then p else q = case b of inl 7→ p ; inr 7→ q

• This is general enough: for b : X → T2, we can define

if b then p else q = do x ← b ; if x then p else q

14



Tests as Assertions

• Define ?: 2→ T1

b? = if b then η(⋆) else⊥

• It can be shown that

if b then p else q = do b?; p ⊔ do b̄?; q,

like in KAT!

• This uses bounded completeness

15



While-Loops

• Given b : Γ→ 2, p : Γ→ T1, while b do p is the least solution of equation

while b do p = if b then (do p ; while b do p) else η(⋆)

• This can be computed thanks to enrichment by Kleene fixpoint theorem

16



Innocent Monads for Assertions

• We have conversion ?: 2→ T1 from tests to assertions

• But not all programs in T1 may be assertions,

e.g. for partial store monad T1 = S → S × 2

• So, how can we specify assertions?

Definition (Innocent Monads): bdCpo⊥-monad P is innocent if it is

• commutative: do x ← p; y ← q ; η(x , y) = do y ← q; x ← p ; η(x , y)

• copy-monad: do x ← p; y ← p ; η(x , y) = do x ← p ; η(x , x)

• weakly discardable: do x ← p ; η(⋆) ⊑ η(⋆)

One consequence: p ⊓ q = do p ; q (like in KAT!)

Example: Partial reader monad PX = S → X + 1

17



Frame of Assertions

Definition (Assertions): Assertions are morphisms Γ→ P1 for innocent monad P

Recall that set F is called frame if

• F is lattice

• F has all joins

• F validates frame distributively: a ∧
∨

i∈I bi =
∨

i∈I (a ∧ bi )

Theorem: Assertions Γ→ P1 form a frame, in particular internal Heyting algebra

Thus, we can interpret over P1: logical connectives, quantifiers, fixpoints of predicates

Example: For partial reader monad, P1 = S → 2∼=P(S) – Boolean algebra of predicates on S

18



Hoare Triples

• Given bdCpo⊥-monad T with innocent submonad P, we interpret Hoare triples

{ϕ} x ← p {ψ(x)} ≡ doϕ; x ← p;ψ(x); η(x) = doϕ; p

• This allows defining generic Hoare calculus

• Main result of our LICS 2013 paper: soundness and relative completeness

• Proof idea: show expressibility of weakest (liberal) preconditions

wp(x ← p, ψ(x)) =
⊔{

ϕ | {ϕ} x ← p {ψ(x)}
}

For example: wp(while b do p, ψ) = νγ. if b thenwp(p, γ) elseψ

19



Representing Innocent Monads



Innocent Monads on Set

bdCpo⊥-monads are very general, but innocent monads tend to be specific

Examples:

• Starting from subdistributions TX =
{
d : X → [0, 1] |

∑
d ≤ 1

}
, the largest

copy-submonad is maybe-monad PX = X + 1

• Largest weekly discardable submonad of partial store monad TX = S → S × X + 1 is

partial reader monad PX = S → X + 1

We can very generally define “largest copy submonad” and “largest weekly discardable

submonad” by equalizers, e.g.

PX TX T (X × X )
ψ◦∆

T∆

Not “largest commutative submonad”! But weakly-discardable copy-monads tend to be

commutative

20



Representability Question

Question: Is every innocent monad on Set submonad of partial reader monad

PX = S → X + 1

for some S?

21



Frame Monad

Given frame F , TX = FX extends to monad on Set:

• η(x)(x ′) =

{
⊤ (x = x ′)

⊥ (x ̸= x ′)

• do x ← p ; f (x) = y 7→
⊔

x p(x) ⊓ f (x)(y)

Frame monads are almost innocent, but fail to be copy

Example: If F = 2, TX = 2X – powerset monad:

do x ← p ; f (x) =
⋃

x
{y | x ∈ p ∧ y ∈ f (x)} =

⋃
x∈p

f (x)

22



Representability in Frame Monads

Theorem: Let P be innocent monad. Then P is isomorphic to largest copy-submonad of

P1(--), and isomorphism preserves order

Isomorphism α : P → P1(−):

αX (p ∈ PX )(x ∈ X ) = (P !)(p ⊓ η(x))

Copy submonad is identified by condition

x ̸= y =⇒ p(x) ⊓ p(y) = ⊥ (p : X → P1)

Example: Start with PX = S → X + 1 ⇝ P1X = (2S)X ∼= S → P(X )

Copy condition for p, q : S → P(X ): p(s) ∩ q(s) = ∅ ⇝ largest copy-submonad is P

23



Topological State Monad

• Let S be any topological space, and O(S) be its frame of opens

• Topological state monad (on Set!): TX = S →cont X⊥ (continuous functions) to

one-point compactification of discrete space X

• P1 = 1S⊥
∼=O(S) where 1⊥ – Sierpiński space

• By restricting to copy-submonad of (O(S))(−), we thus identify S as points of frame of

opens O(S)!

24



Stone Duality

Generally, Stone dualities:

Spaces Algebras

O

pt

Examples:

• Spaces = Stone spaces, Algebras = Boolean algebras

• Spaces = Sets, Algebras = Complete atomic Boolean algebras

• Spaces = Sober spaces, Algebras = Spatial frames

Spatial frames = frames with “enough points” = isomorphic to O(S) of some space

= those F , for which any p, q ∈ F can be separated by some frame morphism F → 2

25



Spatiality

Definition: Call Innocent monad P spatial if P1 is spatial frame

Theorem: Every spatial innocent monad embeds into a partial reader monad

Proof Idea: State space S = frame morphisms P1→ 2 = completely prime filters

Monad morphism αX : PX → (S → X + 1):

αX (p ∈ PX )(s : P1→ 2) =

inl x if s(δ♯x(p)) = ⊤

inr ⋆ otherwise

where δx(x) = η(⋆), δx(x
′) = ⊥

26



Current State

Conjecture: For non-spatial P there is no embedding of P to partial state monad, preserving

both meets and joins

• Potential example: largest copy submonad of F (−) with F – frame (actually, Boolean

algebra) of regular opens of [0, 1]

(Regular opens = opens that are equal to interiors of their closure)

• Regular opens embed to all opens ⇝ possibly, we can embed to partial state monad, if

not insist on join preservation

27



Further Work

• When exactly embedding holds?

• How good/bad can it be (Meet-preserving? Order-preserving?)

• Any impact of accessibility (=rank)?

• Representation for complete semiring module monads S (−) (S – complete semiring)

• Related: Representation for innocence, without copy

28


	Kleene Algebra with Tests
	Monad-Based Hoare Logic
	Representing Innocent Monads

